1. (i) 153 Eu has (2) more neutrons

OR

¹⁵³Eu has 90 neutrons AND ¹⁵¹Eu has 88 neutrons \checkmark

ALLOW There are a different number of neutrons IGNORE Correct references to protons / electrons DO NOT ALLOW Incorrect references to protons / electrons

(ii) (It has the) same number of protons **AND** electrons **OR**

Both have 63 protons and 63 electrons \checkmark

ALLOW Same number of protons AND same electron configuration DO NOT ALLOW 'Same number of protons' without reference to electrons (and vice versa)

[2]

1

1

(a) Mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓

(the mass of a) carbon-12 **OR** 12 C (atom) \checkmark

IGNORE Reference to average OR weighted mean (*i.e. correct definition of relative atomic mass will score both marks*)

ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of carbon-12 for two marks.

ALLOW 2 marks for:

'Mass of the isotope OR mass of the atom compared to ${}^{12}C$ atom given a mass of 12.0' i.e. 'given a mass of 12' OR C12 is 12 communicates the same idea as 1/12th.'

ALLOW 12C OR C12

ALLOW 2 marks for:

mass of the isotope

mass of 1/12th mass of carbon-12

i.e. fraction is equivalent to 'compared to'

ALLOW 1 mark for a mix of mass of atom and mass of mole of atoms, i.e. 'mass of the isotope/mass of an atom compared with 1/12th the mass of a **mole OR** 12 g of carbon-12.'

DO NOT ALLOW mass of 'ions' OR mass of element

(b) $(151 \times 47.77) + (153 \times 52.23)$ 100

OR

72.1327 + 79.9119 OR 152.0446 (calculator value) ✓

 $A_{\rm r} = 152.04$ \checkmark

ALLOW Correct answer for two marks

ALLOW One mark for ECF from transcription error in first sum provided final answer is to 2 decimal points and is to between 151 and 153 and is a correct calculation of the transcription

[4]

2

1

1

3. (i) (atoms of the) same element **OR** same atomic no. **OR** no. of protons

AND

with different numbers of neutrons OR different masses ✓ IGNORE 'same number of electrons' DO NOT ALLOW 'different numbers of electrons' DO NOT ALLOW 'different relative atomic masses' DO NOT ALLOW 'elements with different numbers of neutrons' without mention of same protons OR same atomic number

(ii) same (number of) electrons (in the outer shell)

OR

same electron configuration OR structure ✓ DO NOT ALLOW different number of protons IGNORE 'same number of protons' IGNORE 'they are both carbon' OR 'they are both the same element' (iii) **mass** of the isotope compared to 1/12th

OR

mass of the atom compared to 1/12th \checkmark

(the mass of a) carbon-12 **OR** 12 C (atom) \checkmark

IGNORE reference to average *OR* weighted mean (*i.e.* correct definition of relative atomic mass will score both marks)

ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of \checkmark carbon $-12 \checkmark$

ALLOW 2 marks for:

'mass of the isotope **OR mass** of the atom compared to ${}^{12}C$ atom given a mass of 12.0' i.e. 'given a mass of 12' communicates the same idea as 1/12th.'

ALLOW 12C OR C12 ALLOW FOR 2 MARKS:

 $\frac{mass of the isotope}{mass of 1/12th mass of carbon - 12}$

i.e. fraction is equivalent to 'compared to' ALLOW 1 MARK FOR a mix of mass of atom and mass of mole of atoms, i.e.: 'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon -12.'

[4]

2

4. (i)

	protons	neutrons	electrons
²⁴ Mg	12	12	12
²⁵ Mg	12	13	12

 24 Mg line correct \checkmark

²⁵Mg line correct ✓ *mark by row*

2

(ii)
$$\frac{24 \times 78.60 + 25 \times 10.11 + 26 \times 11.29}{100}$$

The (weighted) mean mass of an atom

100

OR 18.8640 + 2.5275 + 2.9354

OR 24.3269 ✓

(iii)

 $A_r = 24.33$ (to 4 sig figs) \checkmark

ALLOW two marks for $A_r = 24.33$ with no working out

ALLOW one mark for ecf from incorrect sum provided final answer is between 24 and 26 and is to 4 significant figures, e.g. $24.3235 \times \text{gives ecf of } 24.32 \checkmark$

2

OR (weighted) average **mass** of an **atom** \checkmark relative to $1/12^{\text{th}}$ (the mass) \checkmark of (one atom of) $^{12}C \checkmark$ ALLOW The (weighted) mean mass OR (weighted) average mass of an atom *OR* average atomic mass ✓ compared with (the mass of) carbon-12 \checkmark which is $12 \checkmark$ For 1st marking point, ALLOW mean mass of the isotopes **OR** average mass of the isotopes Do **NOT ALLOW** the singular: isotope ALLOW mass of one mole of atoms ✓ compared to $1/12^{th}$ \checkmark (the mass) of one mole / 12 g of carbon-12 \checkmark mass of one mole of $atoms \checkmark$ $1/12^{th}$ \checkmark the mass of one mole / 12 g of carbon-12 \checkmark 3 [7] (i) atoms of the same element with different numbers of neutrons/different masses (1) 1

(ii) ${}^{79}\text{Br 35 protons, 44 neutrons, 35 electrons (1)} \\ {}^{81}\text{Br 35 protons, 46 neutrons, 35 electrons (1)} 2 \\ (iii) (1s^2)2s^22p^63s^23p^63d^{10}4s^24p^5 (1) 1 \\ [4]$

5.

- Molar mass of anhydrous calcium nitrate = 164.1 g mol^{-1} (1) 6. Ratio $Ca(NO_3)_2$: $H_2O = 69.50/164.1 : 30.50/18$ or 0.4235 : 1.694 or 1 : 4 (1) Formula = $Ca(NO_3)_2 \cdot 4H_2O(1)$
- 7. (atoms of) same element/same atomic number with (a) different numbers of neutrons/different masses \checkmark

(b)					
	isotope	percentage composition	number of		
			protons	neutrons	electrons
	⁸⁵ Rb	71 to 73	37	48	37
	⁸⁷ Rb	27 to 29	37	50	37
	mark	must add		•	

mark

up to 100 \checkmark

ie 1 mark for each atomic structure; 1 for % compositions.

 $A_r = \frac{(85 \times 72) + (87 \times 28)}{100} / 85.56$ = $85.6 \checkmark 2$ nd mark for significant figures 71/29: 85.58 = 85.6 73/27: 85.54 = 85.5

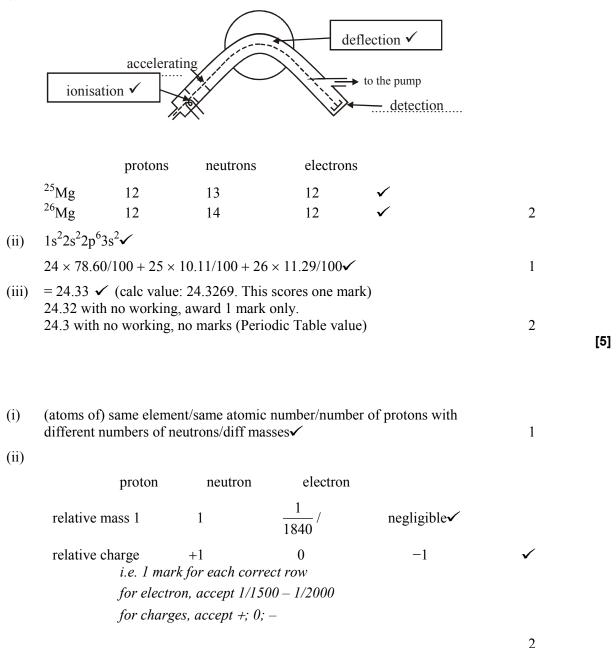
(c) carbon-
$$12^{12}$$
C \checkmark

PhysicsandMathsTutor.com

[3]

3

1


[7]

2

1

8. (i)

9.

[3]

- 10. (i) average atomic mass/weighted mean/average mass \checkmark compared with carbon-12 \checkmark 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark *OR*
 - (ii) The mass of 1 mole of **atoms** of an element compared with 12 g \checkmark of carbon-12 \checkmark 3 (121×57 21) + (122×42 70)

$$A_{r} = \frac{(121 \times 57.21) + (123 \times 42.79)}{100} / 121.8558 \checkmark$$

$$= 121.9 \checkmark$$
[5]

11.

13.

isotope	protons	neutrons	electrons	
¹² C	6	6	6	✓
¹³ C	6	7	6	~

12. (i)	mass spectrometry	\checkmark
14. (1)	mass spectrometry	

(ii) mass of an isotope compared with carbon-12 ✓
1/12th of mass of carbon-12/on a scale where carbon-12 is
12 ✓
mass of 1 mole of the isotope/mass of 1 mole of carbon-12

is equivalent to the first mark "mass of the isotope that contains the same number of atoms as are in 1 mole of carbon-12" \rightarrow 1 mark (mark lost because of mass units)

(iii) 12 × 95/100 + 13 × 5/100 OR 12.05 ✓
 = 12.1 (mark for significant figures) ✓
 (12.1 scores both marks)

[5]

[2]

1

2

2

1 2

- (a) (i) atoms of same element/same atomic number.... with different numbers of neutrons/different masses ✓
 (ii) isotope protons neutrons electrons

 ⁴⁶Ti
 22
 24
 22 ✓
 - 47 Ti 22 25 22 \checkmark

(b)
$$A_r = \frac{(46 \times 8.9) + (47 \times 9.8) + (48 \times 81.3)}{100} / 47.724 \checkmark$$

= 47.7 \checkmark

14.	(i) ⁷⁹ Br has two \checkmark less neutrons than ⁸¹ Br \checkmark					2	
		⁷⁹ Br have same numbers of protons \checkmark and same number of electrons \checkmark				2	[4]
15	isotopo	nratana	noutrong	alaatrang			
15.	isotope	protons	neutrons	electrons			
	nickel-58	28	30	28			
	nickel-60	28	32	28			
	nickel-62	28	34	28			
		\checkmark	\checkmark	\checkmark			
	For	r ecf, 3rd colu	nn same as f	irst column.			
							[3]

16.	(i)	mass spectrometry \checkmark mass spec/mass spectrometer should also be credited	1	
	(ii)	average mass/weighted mean mass of an atom \checkmark compared with carbon-12 \checkmark 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark mass of 1 mole of atoms (of an element) mass of 1 mole of carbon-12 is equivalent to first two marks "mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" \rightarrow 2 marks (mark lost because of mass units)	3	
	(iii)	$63.0 \times 77.2/100 + 65.0 \times 22.8/100 / 63.456 \checkmark$ = 63.5 (mark for significant figures) \checkmark	2	
	(iv)	copper/ Cu ✓	1	[7]

2

[5]